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We derive a reformulation of statistical thermodynamics for fluids of molecules 
which interact by highly directional attraction. The molecular model consists of 
a repulsive core and several sites of very short-ranged attraction. We explore the 
relationship between graph cancelation in the fugacity expansion and three 
types of steric incompatibility between repulsive and attractive interactions 
involving several molecules. The steric effects are used to best advantage in a 
limited regrouping of bonds. This controls the density parameters which appear 
when articulation points are eliminated in the graphical representation. Each 
density parameter is a singlet density for a species consisting of molecules with a 
specified set of sites bonded. The densities satisfy subsidiary conditions of inter- 
nal consistency. These conditions are equivalent to a minimization of the 
Helmholtz free energy A. Graphical expressions for A and for the pressure p are 
derived. Analogs of the s-particle direct correlation functions and of the 
Ornstein Zernike equation are found. 

KEY WORDS: Highly directional forces; association; chemical bonding; 
expansion in graphs; topological reduction. 

1. I N T R O D U C T I O N  

In  two recent  papers ,  (1'2) referred to in  the text as I a n d  II,  we deal t  with 

the s ta t is t ical  me ch an i c s  of fluids wi th  h ighly  d i r ec t iona l  a t t rac t ive  forces. 

The  m o l e c u l a r  m o d e l  cons is ted  of a repuls ive  core a n d  s h o r t - r a n g e d  a t t rac-  

t ion  m e d i a t e d  by  a single a t t r a c t i o n  site. In  I we gave a r e f o r m u l a t i o n  of 
s ta t is t ical  t h e r m o d y n a m i c s  in  te rms  of two densi t ies ,  the usua l  singlet  den-  

sity p, a n d  the m o n o m e r  dens i ty  Po. A n  a t t rac t ive  feature  of this  t heo ry  of 
assoc ia t ing  sys tems is the s t r o n g  s t ruc tu ra l  s imi la r i ty  to the usua l  s ta t is t ical  
t h e r m o d y n a m i c s  of s imple  a n d  m u l t i p o l a r  fluids, where  on ly  p is used. Th i s  
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similarity was exploited in deriving approximation methods that have time- 
tested analogs in the formulation based on p alone. These two-density ver- 
sions of thermodynamic perturbation theory and integral equation 
methods were given in II. 

Since short-ranged, highly directional attraction is an obvious model 
for chemical binding, the case of monomeric units containing multiple 
attraction sites is of even greater interest. In the following we present a 
reformulation of statistical thermodynamics for the case of several such 
sites. As in the case of a single site, the most significant previous work is 
that of Andersen, (3'4) who used somewhat different methods. 

It seems appropriate to summarize the physical ideas behind the for- 
malism. Although the model is one of site-site interactions, we avoid the 
frequently used reduction to a level of description where sites replace 
molecules as primary units. (5 i0) The opposite extreme consists of treating 
all association products as molecules with internal degrees of freedom. 
While this may be desirable in principle, it almost immediately becomes 
prohibitively complicated. Our approach is best described as one in which 
there are several species of particles. Each species represents a monomeric 
unit in which a specified set o f  attraction sites is bonded. 

The decision whether a site is bonded is not made by an appeal to the 
physical cluster idea, (11'12~ which represents a separate line of development. 
Instead it relies on the clearly defined process of using graph theory after 
writing the total pair potential as a sum of core-core and site-site poten- 
tials and introducing Mayer f-functions for the individual terms. In this 
form graphs become a very flexible instrument, because they incorporate 
the relevant information concerning the geometry of the interactions in a 
form which is accessible and susceptible to physically motivated 
manipulations. In practice this means that we can do a regrouping which 
controls the density parameters that are produced when articulation points 
are eliminated by topological reduction. (131 Thus a great deal of physics can 
be incorporated in going from fugacity graphs to density graphs. That these 
advantages are totally lost in the reduction to a single density based on the 
total f-bond has been documented in the analysis of dimer-forming systems 
in I. 

This paper contains the mechanics and physical justification of the 
reformulation. Possible approximation theories are discussed in a com- 
panion paperJ 14) 

2. PAIR P O T E N T I A L S  

We consider molecular models consisting of a repulsive core and some 
number M of attraction sites. We denote the set of all attraction sites by F, 
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subsets of F by small greek letters, and individual sites by capital letters. 
The pair potential of two identical molecules is then 

~ ( 1 2 ) = ~ R ( 1 2 ) +  ~ ~ qSAB(XAe) (1) 
A ~ I ~ B ~ ! ~  

XAB = r2 + d~(~22) - rl - dA(~Q1 ) (2) 

Here r k and O k denote the position of the center and the orientation of 
molecule k; dA is the vector from the molecular center to site A. Numbers 
k = 1, 2 .... are shorthand for rk and ~2 k. qsR(12 ) is assumed to be strongly 
repulsive, possibly the interaction of two- -no t  necessarily spherical--hard 
cores. The site-site interactions are assumed to be purely attractive or zero, 
i.e., we reserve the possibility that site A interacts only with some sites in 
another molecule: 

0~(12) />  0 (3) 

For any potential q,(12), which may be ~bR(12) or one of the ~bAB(12), we 
define the e-function and the f-function in the usual way by 

e(12) = exp[-/~q~(12)],  f (12)  = e ( 1 2 ) -  1 (4) 

where f l=  1/k~T, k B is Boltzmann's constant, and T is the Kelvin tem- 
perature. 

By the product property of the e-function we have 

e(12)=eR(12) ~ l~ eAe(12) (5) 
A ~ F B ~ F  

[I FI + fA~{ -- (6) f (12)=fR(12)+eR(12){A~rB~r[1 12)] 1} 

A convenient graphical representation exhibits the molecule as a large open 
circle, the sites as small solid circles inside, labeled by type of site. The 
functions fR(12) and eR(12) are shown as solid and dashed lines, respec- 
tively, connecting the peripheries of the large circles 1 and 2. The site-site 
bond fAs(12) is indicated by a solid line connecting site A in 1 to site B 
in 2. The large circles are referred to as hyperpoints. A site A in i is called 
bonded if it has one or more fA~(ij) bonds incident. These graphs keep an 
account of the bonding of sites, and are not intended to represent the 
actual molecular geometry. 

For the case of two identical molecules with sites of type A and B, 
with the proviso of no interaction between like sites, f~A(12)= f~B(12)= 0, 
we obtain from f (12)  the four terms shown in Fig. 1. 
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Fig. 1. The four bonding states for a pair of identical molecules with two inequivalen~ attrac- 
tion sites, with no bonding between iike sites. There are 16 bonding states if all possible 
site-site bonds can occur. 

3. CONNECTIVITY OF FUGACITY GRAPHS 

As in I, the starting point is the graphical expression for the logarithm 
of the grand partition function & which for a uniform system is related to 
the pressure p by 

flpV= ln Z (7) 

where V is the volume of the system. The expressions for /~pV and the 
singlet density p(1) are (13~ as follows: 

~pV= sum of all connected graphs composed of z-points and f-bonds. 
All points are field points. The single point with no bonds is 
included. 

p(1)=graphs  obtained from ~pV by taking all ways of turning one 
field point into a point labeled 1. 

Here z = A exp(//#), where A is the contribution to the partition function of 
the integration over translational and rotational momenta of a molecule, 
and # is the chemical potential. 

The decomposition of the total f-function by (6) results in the 
replacement of points by hyperpoints containing sites. Each total f(12) is 
replaced either byfR(12) or one or more bonds of type fA8(12) in parallel 
with eR(12 ). The hyperpoints 1 and 2 count as directly connected if there is 
either an fR(12) or any fAB(12). Therefore we have, rather trivially, the 
following: 
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/~pV=sum of all connected graphs composed of z-hyperpoints and 
bonds. A bonded pair i, j has either fR(ij), or eR(0") and one or 
more bonds of type f~B(/J)- The single point without bonds is 
included. 

p(1) = all graphs obtained from ~pV by taking all ways of turning a 
field hyperpoint into a hyperpoint labeled 1. 

The issue to be faced next is the following: to what extent is it 
profitable to combine bonding by fR(ij) and lack of bonding between i and 
j into a combined bond eR(0")? In I, where we dealt with a single molecular 
attraction site, the combined bond eR(0") was adopted for all pairs of points 
connected by a network of attraction bonds. This criterion, applied to 
hyperpoints with multiple sites, would not produce optimal results, because 
the information concerning bonding of individual sites would be discarded 
in making the decision. In order to achieve useful incorporation of this 
information, it is necessary to refine the analysis by pursuing the connec- 
tivity by attraction bonds down to the site level. We present the formalism 
that achieves this goal. The physical justification is postponed to Section 4. 

As in I, we begin by considering the subclass of connected graphs such 
that all hyperpoints are connected by networks of attraction bonds. Denote 
this class by {S}. Since the hyperpoints are already connected, a bond 
fR(tj) may be present or absent between any pair i, j. Consider the situation 
in the absence of any fR-bonds. We can break down the connectedness 
property between hyperpoints into two kinds of connectedness between 
sites. 

We define: two sites A and B are bond-connected if and only if there is 
a path consisting of attraction bonds and attraction sites from A to B. 

We define: two sites are constraint-connected if and only if they are 
located in the same hyperpoint. 

A graph in {S} may contain some or no unbonded sites, and one or 
more networks of bond-connected sites. If there are two or more networks 
of bond-connected sites, then the connectedness of the hyperpoints must be 
supplied by constraint-connections between sites belonging to different 
networks. 

Consider pairs of hyperpoints i and j not directly connected by any 
fAe(/j). To what extent should absence and presence offR(/j) be combined 
into a bond eR(/j)? Our rule for adopting the combined bond is this: 

I f  any site A in i is bond-connected to any site B in j then the combined 
bond e R( iJ') is adopted. 

This implies the presence of eR-bonds between all pairs of hyperpoints 
spanned by a bond-connected network of sites. 
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Two facts are noteworthy. First, a particular eR(0 ) may be demanded 
by more than one bond-connected network. Secondly, presence of eR(~/) 
and eR(ik) does not necessarily imply presence of eR(jk). Presence of the 
first two bonds in the absence of the third occurs in the following situation. 
In i, c~ is the set of sites bond-connected to sites in j, and fl is the set of sites 
bond-connected to sites in k. The sets c~ and/~ are disjoint, and no site in j 
is bond connected to a site in k. An example is shown in Fig. 2. 

As in I, the eR-bonds are treated as legitimate bonds, never to be 
broken down by eR = f R  + 1. As a result, all hyperpoints spanned by a 
bond-connected network are irreducibly connected. In the case of a single 
attraction site, analyzed in I, all graphs in {S} contain only one bond-con- 
nected network, and are rendered irreducible by the process of "filling with 
eR bonds." For the case of multiple sites, this is no longer true. We may 
have a point k where two br more subgraphs are connected purely by con- 
straint connection. No combined ee-bonds are adopted between hyper- 
points in different subgraphs. In the absence of additional fR-bonds, k 
remains an articulation point (AP). 

We define: for a graph in {S} a hyperpoint i is a constraint- 
articulation point (c-AP) if deleting the constraint connection at i (without 
deleting any sites or bonds) and disarticulating any incident bonds fR(0") or 
eR(ij) at i causes the graph to split into two or more connected, but not 

/ 
I / 

/ / /  / /  

// ~ \  

I \ / fl 
N / I |  

I x f l  
I / "- I~ 

Fig. 2. Filling with eR-bOnds for groups of hyperpoints spanned by bond-connected 
networks of sites. 
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mutually connected fragments. In counting fragments, unbonded sites in i 
are ignored. In other words, the sites ek in the kth fragment must be bon- 
ded to at least one site in another hyperpoint. If M is the number of 
fragments, and eo is the set of unbonded sites, then we have rather trivially, 
with M ~> 2, 

M 

0~=F,  c~i~c~:= ~ for ivaj (8) 
k = 0  

We can now characterize the graph sum {S}, for which we borrow the 
terminology s-mer graphs from I. It is convenient to first single out the sub- 
class {B} of graphs withoutfR-bonds. We name {B} the bare s-mer graphs. 

{B} consists of all connected graphs such that the only connectors are 
fAB-bonds and eR-bonds between all pairs of hyperpoints which contain 
mutually bond-connected sites. {B} contains both irreducible graphs, and 
trees of irreducible graphs connected at c-AP's. 

We name the set of graphs {H} = {S}-{B}  the hindered s-mer 
graphs. The graphs in {H} are obtained from the graphs in {B} by taking 
all ways of adding fR-bonds between pairs of hyperpoints not directly con- 
nected by eR-bonds. {H}, too, contains both irreducible graphs, and trees 
of irreducible graphs connected at c-AP's. 

Physically, the hindered s-mer graphs take into account steric self-hin- 
drance of bonded s-meric structures, thus correcting for the absence of self- 
hindrance in the bare s-met graphs. 

Finally, we can express the set of all connected graphs in terms of the 
graphs in the subclass {S} and the monomer hyperpoints: 

flpV= sum of all connected graphs consisting of s-mer graphs, with 
s=  1, 2,..., 0% and fR-bonds between hyperpoints in distinct 
s-mers. The single hyperpoint without bonds is included. 

Here s denotes the number of hyperpoints of an s-mer. Note that the 
monomers, hyperpoints with all sites unbonded, are included as s = 1. The 
rule for obtaining p(1) is unchanged: 

p(1)=all  graphs obtained from flpV by taking all ways of turning a field 
hyperpoint into a hyperpoint labeled 1. 

4. S T E R I C  I N C O M P A T I B I L I T Y  

At least three types of steric incompatibility (SI) can produce useful 
simplification by making certain graphs exactly zero or negligible. In some 
but not all cases bond rearrangement of the type carried out in the 
preceding section is required to make the physical effect of SI manifest in 
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graphical form. Two of the types of SI depend on the presence of more 
than one attraction site. 

The first type, SI1, involves three molecules, but only one site per 
molecule. It is the same as the sole type of SI encountered in I. When a pair 
of attraction sites A(1) and B(2) get sufficiently close so that fAe(12) is 
non-negligible, i.e., when they form a bond, then the repulsive cores of 1, 2, 
and 3 prevent any site of 3 from coming close enough to A(1) or B(2) to 
form a bond. This precludes bonding of a site to more than one molecule. 
In graphical form, SI1 is brought into usable form by the process of filling 
with eR-bonds, which kills bonding of A(1) to two hyperpoints 2 and 3 by 
the presence of the combined bond eR(23), which is zero for hard core 
overlap. 

The second type, SI2, occurs for molecules with multiple attraction 
sites. It involves only pairs of molecules. As an example consider hard 
spheres with two embedded sites, as shown in Fig. 3. Bonded con- 
figurations for two such molecules involve only one site in 1 and one site in 
2 for large bond angle 0. For  sufficiently small 0, a double bond can be for- 
med: A(1) to B(2), and B(1) to A(2). Except for the unrealistic case of very 
small 0, multiple bonding of a site is forbidden. We refer to the prohibition 
of multiple bonding of a site as the weak form, SI2W, and the prohibition 
of multiple bonding between hyperpoints as the strong form, SI2S of this 
type of SI. 

Whenever SI1 and SI2W both hold exactly or to good approximation, 
then the single-bonding condition applies: 

All graphs with multiple bonding of an attraction site are omitted. 

In other words, the only surviving bond-connected networks of sites consist 
of only two sites connected by an attraction bond. 

The single bonding condition is easy to apply, produces vast sim- 
plification, and underlies all approximation theories discussed in IV. It is 
physically motivated, because it applies whenever the potential model is 

@ 
Fig. 3. To the left, model molecule with two attraction sites. The large circle indicates the 
hard core. The radius of the small circular arcs is half the range of the attraction. To the right 
a bonded configuration of two such molecules. 
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tailored to imitate the saturation of the chemical bond that occurs with 
binding. 

The regrouping effected by adoption of the combined eR-bond insures 
that incompatible bond configurations which are killed by SI1 stay 
together when topological reduction is used to eliminate articulation 
points. This allows us to carry out the reduction in all generality without 
forgoing the chance to apply the single bonding condition later. Without 
the regrouping, this would not be the case. 

Having motivated the adoption of the combined bond e R to fill bond- 
connected networks of sites, it is still necessary to indicate why the filling 
was not pushed farther. It will emerge that the reason is closely related to 
yet another type of SI. 

Addition of eR-bonds between hyperpoints without direct connection 
by attraction bonds produces more highly connected graphs. This reduces 
the possibilities for including graphs in solutions of integral equations, 
which generate graphs by composition of subgraphs which share one 
labeled hyperpoint (use of equation of Ornstein Zernike type) or two 
labeled hyperpoints (use of closure equations). For this reason the 
amalgamation of graphs produced by filling with eR-bonds is desirable only 
when negligible graphs are produced by adding graphs that are non- 
negligible, almost equal, and of opposite sign, or at worst already 
negligible. 

Consider the graphs that survive when the single bonding condition 
has been applied, An example of such a graph without fR-bonds is shown 
in Fig. 4, which also exhibits the chain tetrameric configuration for which it 
is non-negligible, assuming the molecules to be of the type shown in Fig. 3, 
with 0 = lr. The combination of hard cores and very short-ranged attrac- 
tions results in a rather rigid chain. If we add any one of the three possible 
fR-bonds, namely, fR(13), fR(24), or fR(14), then we produce a vanishing 

I 
I 
I 

Fig. 4. Illustration of SI3. The graph shown at left is nonvanishing for the chain tetrameric 
configuration shown at the right. Addition of any of the allowed fR-bonds produces a 
vanishing graph. 
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graph because the core overlap demanded by the fR-bond is incompatible 
with the requirement of neither breaking an attraction bond nor violating 
the core exclusions. 

This example is typical of SI3, the last type of SI considered here. It 
occurs when added fR-bonds are incompatible with an s-meric structure. 
Physically, it amounts to the absence of steric self-hindrance which occurs 
when the rigidity of an s-meric structure prevents two of its component 
molecules from encountering each other. The extent to which it occurs 
depends critically on the range of the attractive interactions and the bond 
angles. For this reason it is harder to incorporate in approximation 
theories than the other two types of SI. 

Clearly, filling with eR-bonds would be totally counterproductive in 
the case of the third type of SI, where fR-bonds rather than eR-bonds are 
incompatible with networks of constraints and attraction bonds. This fully 
justifies the restriction of the filling process to pairs of hyperpoints spanned 
by a bond-connected networks of sites. 

5. DENSITIES A N D  SUBSID IARY C O N D I T I O N S  

Having explored the physical motivation for the bond-combining rule, 
we can now return to the next task, the analysis of p(1) into several density 
parameters. For this process, p(1) is expressed in the final form attained at 
the end of Section3. All graphs are retained; i.e., the possible 
approximations discussed in Section 4 are no t  assumed. 

We are not free to choose the density parameters that appear; they are 
determined completely by the analysis of connectivity at the labeled 
point 1. The process of filling with eR-bonds has eliminated all articulation 
points such that disarticulation can break a bond-connected network of 
sites. It will emerge that this results in physically sensible density 
parameters. 

5.1. Def ini t ion and Analysis of Densities 

We analyze the graphs in p(1) in terms of the bonding at the labeled 
point 1. If e is the set of all bonded attraction sites at 1, then the graph is 
assigned to p~(1). Clearly, the p~(1) satisfy 

p(1)= • p (1) (9) 
~ r  

The sum includes po(1), representing graphs with no bonded sites at 1. The 
symbol c is defined to include the improper subset e = F. 
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For each p~(1), we analyze the connectivity of its graphs at the labeled 
point 1. By a familiar theorem, the graphs in po(1)/z are the exponential of 
the subset of graphs for which 1 is not an  AP. This expressed by 

In Epo(1 )/z] = Co(1 ) (10) 

The graph sum p~(1), with ~ va ~ ,  contains the graph sum po(1) as a factor. 
The quotient p~(1)/po(1) contains graphs such that 1 is not a c-AP. These 
graphs are assigned to c~(1). In addition there are all graphs such that 1 is 
a c-AP. These graphs are products of graphs in the c~(1), where the 7's are 
a partition of c~ into nonempty subsets. Thus we have 

p~(1) = po(1) ~ ~I c~(1) (11) 
P(~) = (~} 

where P(~)= {V} denotes partition of e into subsets with index V. The 
improper partition of a single set 7 = ~ is included. 

The presence of a labeled point in the ca(l) makes it easy to carry out 
the reduction to irreducible graphs, defined as graphs free of AP's. Each 
ca(l) contains a subset of irreducible z-graphs. The set of all z-graphs in 
G(1) is obtained by treating the irreducible graphs in the following way. At 
each field point i add on nothing, or any allowable graph with one labeled 
point i, which is then turned into a field point. If the set of bonded sites in 
the irreducible graph is ~(i), then the allowable decorations consist of 
graphs with one LP labeled point i, with sites in e not bonded. These are 
the graphs in p~(i), where 7 is F--c~ or any subset thereof. We define a set 
of density parameters a~(1) by 

~r~(1)= ~ p~(1) (12) 
ycC~ 

and note the special cases 

a0(1) = p0(1), ar(1)=p(1) (13) 

Then the rule for expressing the G(1) in terms of irreducible graphs con- 
tains the following fundamental rule: 

With each field hyperpoint of an irreducible graph we associate a 
factor ~r_~(i) where c~ is the set of bonded sites at i. (14) 

We have now expressed the ca(l) as sets of all irreducible graphs with one 
labeled point. They can all be derived from the fundamental graph sum c (~ 
defined by the following: 

822/42/3-4-15 



470 Wertheim 

c(~ of all irreducible graphs consisting of s-mer graphs 
(including monomer hyperpoints) and fR-bonds. All hyperpoints 
are field points and carry a-factors according to the rule (14). 

The ca(l) are obtained from c (~ by the functional differentiation process 

ca(1 ) = ~c~~ r ~(1 ) (15) 

which is equivalent to taking all ways of turning a field point for which ~ is 
the set of bonded sites into a hyperpoint labeled 1 and deleting the factor 
ar_~(1). 

5.2. Algebra of Site Operators 

At this point it is convenient to introduce an algebra of site operators; 
this permits us to carry out further manipulations in very compact and 
general form. This is accomplished by obviating the need to keep track of 
the combinatorial conditions that arise from the conditions requiring dis- 
joint sets of  bonded sites when subgraphs and/or a-factors are composed at 
a point. Examples are seen in (11) and (14). 

With each site A at a labeled point i we associate a site operator eA(i ). 
All site operators commute and satisfy 

e](i) = 0 (16) 

For products of distinct eA(i) w e  use the shorthand 

~ ( i ) =  1-[ eA(i) (17) 

Let us temporarily suppress the index i, and consider numbers of the form 

~=Xo+ ~ x~e~ (18) 

They form an algebra which is a straightforward generalization of Clifford's 
dual numbers, which represent the case of only a single e. The usual rules of 
arithmetic and algebra for real numbers also apply to the 2. The sole 
exception is this: division by a number with Xo = 0 is forbidden. Analytic 
functions of 2 are defined by suitable power series, which terminate with 
the linear term if we expand in powers of 2 - X o .  In particular, we note 

(1 + e ) - l =  l - -e ,  ln(1 _+ e) = +e (19) 
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Finally, it is useful to adopt the angular brackets ( ) as a symbol which 
instructs us to take the coefficient of er of whatever is enclosed. Thus, if 
and )~ are operators of the form (18), then 

( Y c )=Xr ,  ( Y ) = Y r ,  (~Y)=  ~ X, y r  ~ (20) 
~ F  

Site operators for different labeled points are independent. When there is 
more than one labeled point, then subscripts on ( ) identify the points i 
for which reduction to the coefficient of ~r(i) is to be made. 

5.3. C o n d i t i o n s  in O p e r a t o r  Form 

For the one-point quantities p~(1), o~(1), and c~(1) we form operator 
quantities of the form (18), as illustrated for the p~(1): 

~(1)=p0(1)+ ~, p,(1)%(1) (21) 

Equation (12) for the o~(1) in terms of p~(1) becomes 

~(1)=f~(1) I~ El+~A(1)] (22) 

By use of (19), the inverse is found immediately to be 

~(1)=d(1) l-[ [1--eA(1)] '(23) 
A ~ F  

which in component form reads 

p=(1)= • ( - 1 )  n(~ 7)o7(1) (24) 

where n(~) stands for the number of sites in r 
Similarly, (11) in operator form reads 

t~(1 )/po(1) = exp[8(1) - co(l)] (25) 

and the inverse relation, which expresses the c~(1) in terms of the p~(1) or 
the o~(1 ) is 

~(1) d(1) 
3(1)-c~ ao(1-----j- y' eA(1) (26) 

A ~ K  

Series expansion of the logarithm yields the result for c,(1 ) in explicit form, 

c,(1) = ~ ( -1 )M(M - 1)! 1~ 6~(1)-- 6~(,),1 (27) 
P(~) = {~,Mf 
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where P ( a ) =  {7, M} indicates the partition of ~ into M subsets, indexed 
by 7. The sum includes the improper partition, M = 1, ~ = 7. The d~(1 ) are 
defined by 

~ ( 1 )  = am(1)/ao(1) (28) 

Finally, we note the operator forms of these relations that are obtained 
when (10) is used to undo the exclusion of co(l). In the forward direction, 
we have 

~(1)/z = exp[((1 )] (29) 

which has exactly the same form as the analogous relation in the ordinary 
single-density formalism, with numbers replaced by operators. We will have 
o~casion to use the inverse relation, 

((1)=ln~(1)=ln0(1)_ ~ CA(I) (30) 
Z Z A e F  

6. S T A T I S T I C A L  T H E R M O D Y N A M I C S  

We follow the procedure in I by proposing an expression for the 
pressure of a uniform system, and verifying that it satisfies the ther- 
modynamic requirement 

fl(@/@)=fi (31) 

where ~ is the number density. We give the suggested expression for the 
pressure both explicitly and in operator form: 

~pv=fkP(1 )- ~ ar_~(1)c~(1)]d(1)+c m~ (32) 

~pV=f < # ( 1 ) [ 1 - ~ ( 1 ) ] >  d ( 1 ) + c  (~ (33) 

We take a variation of (33) and note that (15) implies 

6c(~ f (~(1) 6d(1))  d(1) (34) 

By taking the variation of (30) and multiplying through by ~(1) we obtain 

rid(1 ) - d(1 ) 6~(1 ) = ~( 1 )6z/z (35) 
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By applying the ( ) operation to (35) and using the result and (34), we 
obtain 

Vfl 3p = (6z/z) f p(1) d(1) (36) 

which is equivalent to (31). 
An expression for the Helmholtz free energy A = N/~ - p V is obtained 

from (32) by using 

P~ Co(1)]d(1) (37) N,B# = f p ( 1 ) I n  ---~ 

which is a direct consequence of (10). Then we obtain 

[3A= I [p(1) ln P~ 
d o~cF  

a t _  ~( 1 ) c~(1 )] d( 1 ) - c (~ (38) 

Many alternative forms can be obtained by using the subsidiary conditions. 
The form which exhibits the minimum principle for A most clearly is 
obtained by using (27) to eliminate the c~(1) altogether. Adopting the a's 
as independent variables throughout, we then have 

(39) 

where 

I o0(1) ] /~A=f O-r(1)ln-~-+Q(1 ) d(1)-c (~ 

Q ( 1 ) = -  ~ a r  A(1)+a0(1) ~ (--1)M(M--2)!I-I6~(1)  (40) 
A ~ F P(F) = {y ,m >/2} 7 

Note that here only proper partitions of F into two or more sets are 
allowed. Therefore, Q(1) does not contain O-r(1 ). 

Minimization of/ /A with respect to all the as(1 ) subject to the con- 
straint of a constant total number of particles is expressed by 

~I~A-)~ f ~r(1)d(1)l=O (41) 

We carry this out, using the form of /~A given by (39) and (40). The 
minimization with respect to O-r(1) yields 

In ao(1) _ Co(1 ) = 2 (42) 
A 
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which is the subsidiary condition (10), provided that the Lagrange mul- 
tiplier 2 is identified as 

)~ =/~/~ (43) 

For a~(1) with c~ # F, the minimization yields 

c?Q(1) , at(1 ) 
8a~(1) + ~ T )  6~.~= cr ~(1) (44) 

When the differentiations are carried out, using (40) for Q(I), then (44) 
reproduces exactly the subsidiary conditions for the ca(1 ) with ~ # ~ ,  as 
given in (27). 

7. C O R R E L A T I O N  F U N C T I O N S  

The truncated non-normalized s-particle correlation functions 
~=(1..-s) have expansions in z-graphs. They are obtained by taking the 
graph sum ~pV and applying all ways of turning s points into labeled 
points 1.. .s.  Since (hyper)points are invariant under bond rearrangement, 
this still holds after the bond-combining adopted in Section 3. Again, AP's 
can be eliminated by taking the subset of graphs free of AP's and replacing 
each z with a a-factor according to the rule (14). This applies to labeled 
points as well as field points. As a result ~,(1 .-.s) may be decomposed by 

/Ss(1...s)= ~ a~(~)(1)... ~ a~(,,(s) 
c~(1)c F ~ ( s ) c F  

x hr  ~(l)...r ~(s)(l' ' 's) (45) 

where the subscripts in h indicate the bonded sites at the labeled points 
1...s. 

We can construct an operator /~(1-..s) by applying the construction 
defined in (21) independently to each labeled point. Then (45) can be 
rewritten compactly as 

/3s( l ' . . s )=  (8(1).-.d(s)/~(1.-.s))~... , ,  (46) 

The graphs in /~(1 " ' s )  are free of AP's, but may contain bridge 
points. The further analysis in terms of connectivity at bridge points 
introduces as building blocks the graphs free of AP's and bridge points, 
with specified bonding at the labeled points 1 .-.s. These sums of 
irreducible graphs are obtained from c (~ by taking all ways of turning s 



Fluids wi th  Highly Directional Attractive Forces. III. 475 

points with specified bonding into labeled points, and deleting the 
a-factors. In functional differentiation language, these graph sums are 

63C (o) 
- ( 4 7 )  

Cc~(1)"'~(s)( l " "  S) 80"/- ~(1)(1 ) " " ' c~a r_  c~(s)(s) 

They represent analogs of the s-particle direct correlation functions. 
The most important case is s =  2. The analysis of the graphs in/~(12) 

into simple chains of irreducible graphs is formalized by an equation of 
Ornstein-Zernike type. In its compact operator form it is 

/~(12)- g(12)= f (8(13) ~(3)/~(32))3 d(3) (48) 

8. C O N C L U S I O N  

We have derived a formally exact reformulation of the statistical ther- 
modynamics of systems of associating molecules with multiple bonding 
sites. The theory uses several species of particles; each species represents 
molecules with a specified set of attraction sites bonded. The multidensity 
formalism seems physically reasonable and has at least three major advan- 
tages. The good graph cancelation due to steric incompatibility between 
repulsion and attraction is preserved in going from z to several densities, 
while it is destroyed when a single density is used. The opposite extremes of 
reduction to a site site level of description, and of introducing complicated 
structures with internal degrees of freedom are avoided. Finally, the struc- 
tural similarity to the one-density version of statistical thermodynamics is 
pronounced. This is very helpful in suggesting approximation theories. This 
subject is treated in a companion paper. (141 
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